An Optical Method for Quantitatively Determining the Surface Free Energy of Micro- and Nanoparticles

Cao, Tsai, Zuo (2019) An Optical Method for Quantitatively Determining the Surface Free Energy of Micro- and Nanoparticles Anal Chem (IF: 7.4) 91(20) 12819-12826

Abstract

Surface free energy (SFE) of micro- and nanoparticles plays a crucial role in determining the hydrophobicity and wettability of the particles. To date, however, there are no easy-to-use methods for determining the SFE of particles. Here, with the application of several inexpensive, easy-to-use, and commonly available lab procedures and facilities, including particle dispersion, settling/centrifugation, pipetting, and visible-light spectroscopy, we developed a novel technique called the maximum particle dispersion (MPD) method for quantitatively determining the SFE of micro- and nanoparticles. We demonstrated the versatility and robustness of the MPD method by studying nine representative particles of various chemistries, sizes, dimensions, and morphologies. These are triethoxycaprylylsilane-coated zinc oxide nanoparticles, multiwalled carbon nanotubes, graphene nanoplatelets, molybdenum(IV) sulfide flakes, neodymium(III) oxide nanoparticles, two sizes of zeolites, poly(vinylpolypyrrolidone), and polystyrene microparticles. The SFE of these micro- and nanoparticles was found to cover a range from 21 to 36 mJ/m2. These SFE values may find applications in a broad spectrum of scientific disciplines including the synthesis of these nanomaterials, such as in liquid-phase exfoliation. The MPD method has the potential to be developed into a standard, low-cost, and easy-to-use method for quantitatively characterizing the SFE and hydrophobicity of particles at the micro- and nanoscale.

Links

http://www.ncbi.nlm.nih.gov/pubmed/31518113
http://dx.doi.org/10.1021/acs.analchem.9b02507

Similar articles

Tools