Mixed Lead Halide Passivation of Quantum Dots

Fan, Andersen, Biondi, Todorović, Sun, Ouellette, Abed, Sagar, Choi, Hoogland, de Arquer, Sargent (2019) Mixed Lead Halide Passivation of Quantum Dots Adv Mater (IF: 29.4) 31(48) e1904304

Abstract

Infrared-absorbing colloidal quantum dots (IR CQDs) are materials of interest in tandem solar cells to augment perovskite and cSi photovoltaics (PV). Today's best IR CQD solar cells rely on the use of passivation strategies based on lead iodide; however, these fail to passivate the entire surface of IR CQDs. Lead chloride passivated CQDs show improved passivation, but worse charge transport. Lead bromide passivated CQDs have higher charge mobilities, but worse passivation. Here a mixed lead-halide (MPbX) ligand exchange is introduced that enables thorough surface passivation without compromising transport. MPbX-PbS CQDs exhibit properties that exceed the best features of single lead-halide PbS CQDs: they show improved passivation (43 ± 5 meV vs 44 ± 4 meV in Stokes shift) together with higher charge transport (4 × 10-2 ± 3 × 10-3 cm2 V-1 s-1 vs 3 × 10-2 ± 3 × 10-3 cm2 V-1 s-1 in mobility). This translates into PV devices having a record IR open-circuit voltage (IR Voc ) of 0.46 ± 0.01 V while simultaneously having an external quantum efficiency of 81 ± 1%. They provide a 1.7× improvement in the power conversion efficiency of IR photons (>1.1 µm) relative to the single lead-halide controls reported herein.© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Links

http://www.ncbi.nlm.nih.gov/pubmed/31600007
http://dx.doi.org/10.1002/adma.201904304

Similar articles

Tools