Amperometric immunoassay for the carcinoembryonic antigen by using a peroxidase mimic consisting of palladium nanospheres functionalized with glutathione-capped gold nanoparticles on graphene oxide

Tan, Cao, Yang, Yan, Liu, Zhang, Zhao, Li, Zhang (2019) Amperometric immunoassay for the carcinoembryonic antigen by using a peroxidase mimic consisting of palladium nanospheres functionalized with glutathione-capped gold nanoparticles on graphene oxide Mikrochim Acta (IF: -1) 186(11) 693

Abstract

A composite nanoenzyme was used in a sandwich-type electrochemical immunoassay for the carcinoembryonic antigen (CEA). Hierarchically porous palladium nanospheres (Pd NPs) were functionalized with glutathione-capped gold nanoparticles (G-Au NPs) and then loaded onto graphene oxide (GO) to obtain a peroxidase mimicking nanoenzyme of type GO-supported G-Au/Pd. The composite can catalyze the oxidation of the substrate tetramethylbenzidine (TMB) by H2O2 to give blue-colored oxidized TMB within only 20 s. This strong peroxidase activity, good conductivity and high specific surface area of the material make it a useful label for secondary antibodies (Ab2) for the detection of CEA. The cotton-like electrodeposited gold nanoparticles with good electrical conductivity were used to immobilize primary antibody (Ab1). The amperometric immunoassay has a detection range that extends from 10 fg·mL-1 to 100 ng·mL-1 at a working potential of -0.4 V with addition of 5 mmol·L-1 H2O2 as electrochemically active substrate, and the detection limit is as low as 3.2 fg·mL-1 (S/N = 3). Graphical abstract Schematic of sandwich electrochemical immunosensor for the carcinoembryonic antigen. Electrodeposited gold used as substrate material, and Graphene oxide supported G-Au NPs functionalized porous Pd nanospheres (GO supported G-Au/Pd) as signal amplification platform, which catalyze the oxidation of tetramethylbenzidine (TMB).

Links

http://www.ncbi.nlm.nih.gov/pubmed/31605244
http://dx.doi.org/10.1007/s00604-019-3799-5

Similar articles

Tools