Integrating 808 nm Light-Excited Upconversion Luminescence Powering with DNA Tetrahedron Protection: An Exceptionally Precise and Stable Nanomachine for Intracelluar MicroRNA Tracing

Li, Zheng, Kang, Tang, Pang (2020) Integrating 808 nm Light-Excited Upconversion Luminescence Powering with DNA Tetrahedron Protection: An Exceptionally Precise and Stable Nanomachine for Intracelluar MicroRNA Tracing ACS Sens (IF: 8.9) 5(1) 199-207

Abstract

Although plentiful advanced fluorescence sensors have achieved to analyze microRNAs (miRNAs) in living cells, the prerequisite relating to nucleic acids specific recognition based sensing principle compels them lack favorable accurancy and stability in such complicated biological mediums. Here, we make a double breakthrough for the two challenges by combining a near-infrared (NIR) light powering process with a DNA tetrahedron (DNAT)-based protection concept. In this sensing system, a special nanomachine is first engineered by conjugating a core-shell-structured upconversion nanoparticle capable of highly converting 808 nm NIR photons into ultraviolet ones with self-assembling DNATs. The newly developed nanostructure not only prevents the sensing pathway from triggering during the intracellular delivery as well as reducing the adverse thermal effect for cell viability but also significantly enhances the enzyme resistance to avoid degradation to produce false signals. Furthermore, a fluorescence resonance energy transfer sensing strategy is rationally designed on this nanomachine. Upon using the powering light to excite the upconversion luminescence to activate the nanomachine in living cells, it can stably trace the precise level changes of miRNA-21 sequences at the reaching position with an "off-on" mode of fluorescence outputs.

Links

http://www.ncbi.nlm.nih.gov/pubmed/31833356
http://dx.doi.org/10.1021/acssensors.9b02043

Similar articles

Tools