Declination of long noncoding RNA paternally expressed gene 10 inhibits A375 cells proliferation, migration, and invasion via mediating microRNA-33a

Fu, Bi, Wang, Chen, Liu (2019) Declination of long noncoding RNA paternally expressed gene 10 inhibits A375 cells proliferation, migration, and invasion via mediating microRNA-33a J Cell Biochem (IF: 4) 120(12) 19868-19877

Abstract

The importance of long noncoding RNAs (lncRNAs) has been certified in malignant melanoma. Nonetheless, the functions of lncRNA paternally expressed gene 10 (PEG10) in malignant melanoma remain uninvestigated. This research discloses the influence of PEG10 in the biological actions of malignant melanoma cells. The sh-PEG10 plasmid was transfected into A375 cells; meanwhile, the effects of declined PEG10 on cell viability, apoptosis, migration, invasion, and the correlative protein levels were probed. The miR-33a expression in sh-PEG10-transfected cells was examined, and the above biological processes were studied again in miR-33a inhibitor-transfected A375 cells. Phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and mechanistic target of rapamycin (mTOR) pathways were delved via Western blot. We found that the enhancement of PEG10 was discovered in melanoma tissues compared to related nonmelanoma tissues. Declination of PEG10 frustrated cell viability, repressed cyclinD1 and CDK4 expression, and triggered apoptosis, as well as suppressed migration and invasion in A375 cells. A negative correction between PEG10 and miR-33a was confirmed, and repressed miR-33a inverted the functions of PEG10 repression in A375 cells. In addition, PEG10 repression discouraged the activation of PI3K/AKT and mTOR pathways via elevation of miR-33a. These results indicated that declination of PEG10 restrained A375 cell growth, migration, and invasion via adjusting miR-33a and PI3K/AKT and mTOR pathways.© 2019 Wiley Periodicals, Inc.

Links

http://www.ncbi.nlm.nih.gov/pubmed/31318088
http://dx.doi.org/10.1002/jcb.29292

Similar articles

Tools