Efficient AuPd@GO-based electrochemical nanoprobe for sensitive detection of histone acetylase activity and its inhibitor

Liu, Yang, She, Hu (2019) Efficient AuPd@GO-based electrochemical nanoprobe for sensitive detection of histone acetylase activity and its inhibitor Anal Bioanal Chem (IF: 4.3) 411(27) 7327-7336

Abstract

Histone acetylase (HAT p300), which has aroused great concern in fundamental research and clinical applications, serves as one class of significant tumor markers. In our work, a sensitive electrochemical immunoassay for testing HAT p300 based on both graphene-assisted supported AuPd nanomaterial (AuPd@GO composite) and a typical amperometric i-t technique with fast response is developed favorably. The AuPd@GO-based sensing mechanisms are distributed as follows: the HAT p300 derived acetylation reaction occurs at the customized peptide-immobilized electrode; the AuPd@GO composite acts as carrier to immobilize acetyl antibody, thus constructing a sandwich-type electrochemical immunosensor via an antigen and antibody interaction; importantly, a distinct electrochemical signal could be caught due to the AuPd@GO nanomaterial with a favorable electrocatalytic property to the commercialized 3,3,5',5'-tetramethyl benzidine solution (TMB). Taking advantage of AuPd@GO composite, the established immunosensor displays a wide linear range from 1 pM to 1000 nM, and the detection limit is 0.5 pM (S/N = 3) for HAT p300. Next, the biosensor is also used to analyze the inhibitor of HAT p300 successfully, which is promising for promoting the development of electrochemical HAT-related biodetection and drug discovery. Graphical abstract A sensitive electrochemical immunoassay for testing HAT p300 based on both graphene-assisted supported AuPd nanomaterial (AuPd@GO composite) and a typical amperometric i-t technique with fast response is developed favorably.

Links

http://www.ncbi.nlm.nih.gov/pubmed/31520170
http://dx.doi.org/10.1007/s00216-019-02112-6

Similar articles

Tools