Observation of an isomerizing double-well quantum system in the condensed phase

Lau, Choudhury, Li, Schwarzer, Verma, Wodtke (2020) Observation of an isomerizing double-well quantum system in the condensed phase Science (IF: 56.9) 367(6474) 175-178

Abstract

Molecular isomerization fundamentally involves quantum states bound within a potential energy function with multiple minima. For isolated gas-phase molecules, eigenstates well above the isomerization saddle points have been characterized. However, to observe the quantum nature of isomerization, systems in which transitions between the eigenstates occur-such as condensed-phase systems-must be studied. Efforts to resolve quantum states with spectroscopic tools are typically unsuccessful for such systems. An exception is CO adsorbed on NaCl(100), which is bound with the well-known OC-Na+ structure. We observe an unexpected upside-down isomer (CO-Na+) produced by infrared laser excitation and obtain well-resolved infrared fluorescence spectra from highly energetic vibrational states of both orientational isomers. This distinctive condensed-phase system is ideally suited to spectroscopic investigations of the quantum nature of isomerization.Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

Links

http://www.ncbi.nlm.nih.gov/pubmed/31919218
http://dx.doi.org/10.1126/science.aaz3407

Similar articles

Tools